Home Community Meet SPACEL: A Latest Deep-Learning-based Evaluation Toolkit for Spatial Transcriptomics

Meet SPACEL: A Latest Deep-Learning-based Evaluation Toolkit for Spatial Transcriptomics

Meet SPACEL: A Latest Deep-Learning-based Evaluation Toolkit for Spatial Transcriptomics

Scientists traditionally examine tissues by analyzing the expression levels of genes in individual cells using a way generally known as spatial transcriptomics (ST). Researchers gain insights into cells’ spatial organization and performance by measuring the amount of RNA in specific locations inside a tissue. Spatial transcriptomics (ST) technologies have been instrumental in unraveling the mysteries of mRNA expression in individual cells while maintaining their spatial coordinates. Nevertheless, challenges arise when multiple tissue slices have to be jointly analyzed, and the scale of spots in ST slices hampers the resolution.

To beat these limitations, a gaggle of researchers headed by Prof. Qu Kun from the University of Science and Technology of the Chinese Academy of Sciences has created an answer called Spatial Architecture Characterization by Deep Learning (SPACEL). This toolkit has three modules—Spoint, Splane, and Scube—that mix to create a 3D panorama of tissues routinely.

The primary module, Sprint, tackles the cell-type deconvolution task. It predicts the spatial distribution of cell types using a mix of simulated pseudo-spots, neural network modeling, and statistical recovery of expression profiles. This makes predictions accurate and powerful. The second module, Splane, utilizes a graph convolutional network (GCN) approach and an adversarial learning algorithm to discover special domains by jointly analyzing multiple ST slices. Splane uses adversarial training to remove batch effects over several slices and uses cell-type composition as input. Splane stands out for its modern approach to efficiently identifying spatial domains. The third module, Scube, automates the alignment of slices and constructs a stacked 3D architecture of the tissue. That is crucial in overcoming the challenges posed by the restrictions of experimental ST techniques, allowing for a comprehensive understanding of the tissue’s three-dimensional structure.

The researchers applied SPACEL to 11 ST datasets totaling 156 slices and utilized technologies like 10X Visium, STARmap, MERFISH, Stereo-seq, and Spatial Transcriptomics. The researchers emphasize that SPACEL outperformed previous techniques in three fundamental analytical tasks—cell type distribution prediction, spatial domain identification, and three-dimensional tissue reconstruction.

Further, SPACEL demonstrated its superiority in cell type deconvolution, spatial domain identification, and 3D alignment against 19 cutting-edge techniques on simulated and real ST datasets, with its superior performance over previous techniques and simplified approach to accurately understanding ST data.

In conclusion, SPACEL’s introduction is a big step in spatial transcriptomics. Its three modules provide researchers with a robust tool to beat the challenges related to joint evaluation of multiple ST slices, enabling precise cell type predictions, effective spatial domain identification, and accurate 3D tissue alignment. This tool allows for accurate 3D tissue alignment, cell type predictions, and efficient spatial domain identification. 

Try the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to hitch our 35k+ ML SubReddit, 41k+ Facebook Community, Discord ChannelLinkedIn GroupTwitter, and Email Newsletter, where we share the newest AI research news, cool AI projects, and more.

When you like our work, you’ll love our newsletter..

Rachit Ranjan is a consulting intern at MarktechPost . He’s currently pursuing his B.Tech from Indian Institute of Technology(IIT) Patna . He’s actively shaping his profession in the sphere of Artificial Intelligence and Data Science and is passionate and dedicated for exploring these fields.

🎯 Meet Meetgeek: your personal AI Meeting Assistant…. Try it now!.


Please enter your comment!
Please enter your name here